
Prof. Raghuveer Parthasarathy
University of Oregon; Fall 2007
Physics 351

M A T L A B : A B r i e f I n t r o d u c t i o n

DUE DATES FOR EXERCISES P4-P6:
P4: Friday, Oct. 5, 2007; 2.30 pm.
P5,6: Friday, Oct. 12, 2007; 2.30 pm.

 There are many programming languages available. In this course we’ll use MATLAB, a
programming language and “environment” that is used by many scientists and engineers (including the
Parthasarathy Lab). If you’re already familiar with some other language, e.g. C++, Java, IDL, etc., feel free to use it, but
don’t ask Professor Parthasarathy for help with your programs. MATLAB is easy to learn, has many good
built-in functions, and is especially powerful for calculations involving matrices (arrays of numbers), hence its
name.

 The rest of this document is a very brief introduction to some aspects of MATLAB. It should be
read as a companion to “experimenting” with MATLAB, not as a substitute. The best way to learn to
program is to dive in and try it! In this document, MATLAB commands are indicated by boldface
Courier text.

1 MATLAB Availability

 The Physics Department has licenses of MATLAB for student use installed on computers in 17
Willamette Hall. All Physics 351 students have access to this room – I’ll give out the key code in class. You
do not need to purchase MATLAB for this course. (If you would like to, the student version is $99, I
believe.)

In addition, several “freeware” programs that mimic the basic structure of MATLAB are available.
One of these is FreeMat, which can be downloaded at http://freemat.sourceforge.net . I have used
FreeMat very little, but the course teaching assistant or I will check that my assignments are compatible with
it, or comment on any differences between FreeMat and MATLAB commands. We have found so far one
notable difference between FreeMat and MATLAB, which will be described in Section 7 below. Another
popular free MATLAB mimic is Octave; I have never used it.

2 MATLAB’s environment

Upon starting MATLAB, you should see the “Desktop” and “Command Window.” In the
command window you’ll see the “prompt,” which looks like “>>.” You can type commands here. It is
convenient to write programs (“m-files,” described below) using MATLAB’s editor, which you can open by
typing “edit.” (In FreeMat, you can open an editor window under Tools / Editor in the menu bar.) To run a
program, you can hit F5 from the editor, or type the program name (without the .m extension) from the
command window. (Be sure to be in the correct directory or to put the program directory in MATLAB’s
“path.” I’ll write more about this below.) To exit MATLAB, type “quit” at the command prompt, or use the
menus.

3 MATLAB’s tutorials

 You may wish to start by examining some of MATLAB’s built-in tutorials. (In general, MATLAB’s
built-in help features are very good.) Go to “Help / Full Product Family Help” to open the Help Window, if
it’s not open already. Click ‘begin here,’ and you should see a window with “What is MATLAB?”, “Matrices
and Arrays,” etc. Go through a few of these, typing each displayed command in the Command Window.

 In general, you can find information on any function by entering it in the Help window, or by typing
“help [function]” from the Command window.

 Also, “Wikibooks” has an entry on MATLAB programming. Overall it’s not very good, but some
parts may be useful – see the sections on “Data storage and manipulation” and “Graphics.” The URL is:
http://en.wikibooks.org/wiki/Programming:MATLAB .

4 Elementary operations

As with nearly all programming languages, variables store numerical values.
Type at the “>>” prompt:
a=3 [Enter]
“[Enter]” means press the Enter key. Matlab will respond: “a = 3”. Enter a+2 – MATLAB will

respond “5.” Enter a+3 – MATLAB will respond “6” – note that the value assigned to a has not changed
from the “3” we assigned it. Type a = a + 4 – MATLAB will respond “7”. Now what will happen when
you enter a+3? Try it.

Next, define a new variable b by b = 2*a. The “*” indicates multiplication. You should find that
b = 14. Next, enter c = 3*a; including the semicolon at the end. MATLAB sets c to equal 3 times a, but does
not display the value on the screen. Enter “c” by itself to display the value.

Matrices are arrays of numbers. The number “3” is a 1x1 matrix. Create a 1 (row) x 4 (column)
matrix containing the numbers 1, 2, 5, and 3.1 by entering at the “>>” prompt:

d = [1 2 5 3.1]
Matlab will respond: “d = 1 2 5 3.1,” and you can note from the workspace window, or by
typing “whos” (“who” in FreeMat) that there is a variable called “d” that is a 1x4 matrix of
numbers. Now type:
e = 2*d - 3;
Note the semicolon. As above, if you want to see the value of e, type e.
Now type each of the following lines, and observe what happens:
e(3)
e(4)
f = d.*e
This last operation, “ .* ” is very useful – the period in front of the multiplication symbol indicates an
element-by-element multiplication of the two arrays, rather than a matrix multiplication. Both
factors must be the same size, and the product also has the same size. This element-by-element
multiplication is usually what we want. Try:
d*e
Note that this last command gives an error message – if you’re familiar with matrix algebra, you
should see why. If you’re not, don’t worry about it – we won’t make use of matrix algebra in our
course.
g = (1.1 + 2.0)*[1:10]
The colon creates an array whose elements are evenly spaced between the endpoints, 1 and 10; the
command multiplies this by 3.1. Note the parentheses.
h = 1:4:38
The colon creates an array whose elements are evenly spaced by 4.
g(3:6)

Hopefully you’ve deduced from the lines above that numbers in parentheses following a variable
name select those elements of the array. We can use a colon to select a particular range of array
elements.

5 A list of operators (from “Help”)

(For your reference)
+ Addition
- Subtraction
* Multiplication
/ Division
\ Left division [We won’t use this]
^ Power
' Complex conjugate transpose [We won’t use this]
() Specify evaluation order
.* Element-by-element multiplication
./ Element-by-element division
.\ Element-by-element left division [We won’t use this]
.^ Element-by-element power
.' Unconjugated array transpose [We won’t use this]

6 if-then statements
We often need to perform various logical operations. For example, we test whether some condition is met.
Predict beforehand the result of the following code, then try running it (typing each line). The command
“disp” displays a “string” (an array of characters).

if (g(3)>5)
 disp('happy');
else
 disp('sad');
end

7 for loops
A “for” loop increments an “index” variable over some range. Try the following:

for k=1:5,
 k
 m(k) = k/5;
end

(If you’re using FreeMat, you’ll get an error message – see the footnote1.) The items between “for” and
“end” are repeated five times, each time with a different (displayed) value of k. Note that the semicolon will
prevent the value of m from being displayed. What do you suppose the array “m” looks like? Examine it, by
typing: “m”. Next, try the following, first trying to predict what the result will be:

n = 1:10;
n
for k=1:5,
 n(2*k) = 10-k;
end
n

1 Unlike MATLAB, FreeMat strangely requires that lines in For loops be “statements” assigning values to variables, e.g.
“a=3.” Therefore we can’t just type “k” to see the value of k. We can, however, type “k=k” – this assigns to k the
same value it already has, and displays it.

The index variable doesn’t have to run sequentially from 1 to its end. For instance, the loop in the previous
example could have been written

for k=2:2:10,
 n(k) = 10-k/2;
end

with the same result. (Try it.)

8 Plots
MATLAB is both powerful and convenient for making plots. Let’s plot x2-3x as a function of x over the
range x = -2 to 3 in increments of 0.1.

x = -2:0.1:3;
plot(x, x.*x - 3*x, 'ro-')
“ro-” means the plot color is red (“r”), points are indicated by circles (“o”), and a line (“-“) connects
the points.
hold on
“hold on” means keep this plot in this figure window when we add another plot, this time of y =
0.2x3 - 4x2 +10 as a blue dotted line:
y = 0.2*x.^3 - 4*x.*x + 10;
plot(x, y, 'b:')
xlabel('x')
This last command labels the horizontal axis. “ylabel” does the same for the vertical axis, and “title”
adds a title.
Note that we could also have calculated y, less elegantly, with a for loop:
for j=1:length(x)
 y(j) = 0.2*x(j)^3 - 4*x(j)*x(j) + 10;
end
The command “length” returns the number of elements in x.

9 User inputs

Many sorts of user inputs can be constructed, including “push-button” user interfaces. The simplest
input uses the “input” command. Try:

z = input('Enter your favorite number: ');
z

10 m-files
Instead of typing at the command prompt, we write programs and functions – text files of MATLAB
commands. Save these as [filename].m .

It’s important to keep track of the directory you’re working in, which you can see from the top of the
command window, or by typing “pwd”. You can change directories by “cd '[directory]'” or by
using the menu bar at the top of the command window. When looking for programs, MATLAB will look in
the present directory and in the “path,” which can be set from the File Menu (“Set Path”). One of several
ways to list all the files in the present directory is “dir”.

m-files contain MATLAB commands and also comments, which are not executed but which are very
important in making the program readable. Comments are indicated by a “%” – MATLAB ignores
everything on a line that follows a “%”.

Type and save the following, which calculates ∑
=

N

j
j

0 2
1

, as an m-file called “simpleseries.m”:

% simpleseries.m
% Raghuveer Parthasarathy
% April 19, 2007

% A series which should quickly converge

nloops = input('Number of iterations: ');
s = 0.0;
for j=0:nloops,

s = s + 1/(2^j); % increment “s” at each iteration
end
disp(s)

Run the program by typing simpleseries at the command prompt. Run it for 3, 10, and 50 iterations.

11 Misc.
Two additional useful commands: “clear all” clears the values of all the variables, and “close all”
closes all the open figure windows.
Control-C will abort whatever process is running – useful, for example, if you’ve set up some slow or infinite
loop.

Exercises

(P4, 5 pts.) Reading. Start using MATLAB or FreeMat – find an appropriate computer. Read the above
text, enter all the MATLAB commands, examine the output, and make sure you can get all the commands
work as they should. Send Prof. Parthasarathy an email that says that you’ve done this. You don’t need to
send printouts or other records of the output.

(P5, 6 pts.) Sine wave. Recall that a sinusoidal oscillation has the form x(t) = A sin(ωt - φ), where the
period T = 2π/ω. (MATLAB, by the way, has a pre-set value of pi called, appropriately, “pi”.) Consider an
oscillator with a period of 2 seconds, an amplitude of 1 meter, and a phase offset φ=0. Plot x vs. t for 5
cycles of oscillation, and label the axes. Hints: Choose an appropriately dense array of time points – entering
“t=0:20” is bad, and “t=0:2:20” is even worse – think about why. You can make a “for” loop to
calculate the x value corresponding to each t value, or just calculate the entire “x” array in one step. Plot x
and t. If you’re stumped, first do this exercise by hand, i.e. without a computer, and then return to
MATLAB.

(P6, 7 pts.) Modifying “simpleseries” – partial sums of a simple series.
(a, 4 pts.) Modify simpleseries.m (above) to calculate and plot the partial sum of its series at each term, up to 31
terms. Hand in your plot. In more detail: By “partial sum” we mean the sum at each “step” of adding an extra
term to the series. Instead of “s” being just one element, make it an array, setting s(1) = 0.0; before
the “for” loop. If you still make the for loop run from 0 to nloops, it should set s(2) to equal s(1) + 1/20 when
j=0, s(3) to equal s(2) + 1/21 when j=1, s(4) to equal s(3) + 1/22 when j=2, etc., up to the final, 31st term
(j=30). Plot the output using either “plot(s)”, or “plot(1:31, s)”.

(b, 2 pts.) The series ∑
=

N

j
j

0 2
1

 is a simple geometric series, whose sum you should know how to analytically

calculate. (Yes, I expect you to have learned things in your math classes.) For N=∞, what is the sum?
(c, 1 pt.) How many terms of the sum did your program need before s was within 10% of its asymptotic
limit of part (b)?

